SpinOffs

   

Phase Change - Make Mine a Double!

by Mark R. Anderson on Feb 22, 2019 10:40:06 AM

As I’ve always said, there’s as much thermodynamics in a glass of beer, as there is in a power plant. Don't believe me? Read on. Phase change is common phenomena that we see all the time.  We’re most familiar with H2O, of course, in its various forms: ice, water, and steam. This is partly because it’s a very common substance (on Earth anyway) but also because it’s one of the rare fluid types that readily changes phase at temperatures and pressures humans can typically dwell in. 

 

Back to Beer...

When Perfect is Good Enough - Perfect Gas Models

by Mark R. Anderson on Feb 15, 2019 10:22:00 AM

What is a perfect gas?

A perfect gas is one that has a linear variation in energy with respect to temperature and a linear variation in pressure with respect to temperature at constant volume. The perfect gas model is the simplest of all models for gas phase fluids. For a perfect gas, we need only two unique properties of the substance to determine the relationships between pressure, density, energy, and temperature. 

 

Valentine’s Day is February 14, and while some cynics refer to it as a “Hallmark holiday”, most people commemorate the day in some way. One of the biggest challenges is finding a card that perfectly captures the way you feel about someone, while also reflecting who you are.  Well, Concepts NREC has created some turbomachinery-themed Valentine’s Day cards for engineers. These fall into the Art end of our Art-to-Part Solution.

 

Fluid Phenomena Primer: Energy Versus Temperature, Specific Heat

by Mark R. Anderson on Feb 8, 2019 10:10:29 AM

As one might expect, the temperature of a substance typically increases as energy is added to it. This is the case with most substances in all phases. The exception is when a substance crosses to a different phase, which usually involves no temperature change. The energy difference between these phases is called the “energy of formation”.  

Temperature envelopes in the turbomachinery industry are constantly increasing as the state of the art evolves in pursuit of better performance. This means engineers need to design compressors with higher and higher exit temperatures, and turbines and nozzles with continuously increasing inlet temperatures. This rise in temperature greatly impacts the selection criteria for materials used. 

Previous | Next