AxCent

AxCent® is used for detailed 3D geometric design and for rapid flow analysis of multistaged axial and radial turbomachinery through streamline curvature. AxCent employs powerful features for axial, mixed-flow, and radial geometries that can be combined to design almost any turbomachinery.

Blade Geometry

AxCent easily handles the most complex blade geometry. A partial list of blade design features include:

  • Blade stacking of 2D cross sections
  • Blade restaggering around an arbitrary axis
  • Bowed blading defined by hub-to-shroud bow profiles
  • Bowed or sculpted element with arbitrary number of mid-span sections
  • Variable tip clearance on either end of the blade
  • Flow cuts and radial trims
  • Swept leading/trailing edges
  • Multiple, offset, and independent splitter blades
  • Irregular blade/splitter configurations for noise reduction

Other design features include:

  • Parameterized volute geometry generation
  • Split duct geometry
  • Fillets with constant or variable radius and aspect ratio

Recent 3D features include:

  • Cutaway view allows real-time cross sections to be viewed as the design is edited
  • 3D overlays permit viewing of current, real-time changes on a transparent overlay

Flow analysis

AxCent includes several options for real-time interactive flow analysis:

  • Inviscid streamline curvature solvers, including Concepts NREC's Multi-Stream Tube Solver (MST),  are recognized in the industry as the best for centrifugal pumps and compressors
    • MST puts the power of real-time analysis in your hands.  It enables you to immediately visualize the consequences of design changes on velocity, temperature, and pressure. You can look at multiple iterations in seconds, rather than the hours necessary to export each design to CAD for CFD analysis. 
    • Using MST, you can significantly reduce the overall design cycle time by providing an optimized iteration for validation, rather then the more traditional iterative process that requires a lot more back and forth.

Before editingDesign before editing


After editing

Design after editing


And a number of CFD-based solvers:

  • Blade-to-blade is a powerful and rapid quasi-3D solver for quickly evaluating flow patterns across the channel
    • Quickly provides validated feedback to resolve blade profiles for twist, camber and thickness
  • Throughflow is another quasi-3D solver for rapid analysis of axial streamwise flow in compressors and turbines using industry-standard loss and deviation models
    • Enables feedback in minutes compared to full CFD analysis
    • Run multiple iterations to improve performance
  • Full 3D CFD with an advanced full Navier-Stokes solver for comprehensive analysis using a seamless one-click interface with Cadence/NUMECA's FINE®/Turbo

Four-stage axial compressor case study showing results from both Throughflow and Blade-to-Blade solvers:

Throughflow Solver

 Throughflow ran in under 25 seconds - best for axial machines


Blade to blade solver

Blade-to-Blade ran in approximately one minute. It works on either axial or radial machines and runs fastest on radial machines.

 

Direct Integration to Other Programs

AxCent works through direct links with all Concepts NREC meanline programs including:

AxCent can be started from any Concepts NREC meanline program (once the geometry has been set up), and can link the AxCent geometry back to the meanline design to rerun the analysis and regenerate the performance maps. Additionally, using TurboOPT II, the AxCent geometry can be linked to an internal optimizer or to a third-party optimizer such as modeFRONTIER, Isight™, VisualDOC, and IOSO.

Stress Analysis Integration

AxCent is fully integrated with Concepts NREC FEA stress analysis programs, Pushbutton FEA™. FEA stress, thermal and modal analysis can be conducted directly through the AxCent interface.

AxCent Interface to other Programs

AxCent is also compatible with many commercial and open source software packages. Some examples include:

    • FLUENT®. Direct export of geometry or CFD grids through native FLUENT format files
    • OpenFOAM®. Export of grid files and importation of output files through OpenFOAM formats
    • CAD Systems. Export of IGES and STEP formats for seamless integration with virtually any CAD package
    • Isight. Link to Isight optimization via XML format or directly through Concepts NREC’s TurboOPT II optimization software
    • Import-export formats with Python scripting, XML format options, various other file output for seamless export to Concepts NREC CAM programs (the MAX-PAC suite)
partner-bg-img
Guided Curve AxCent

Guide Curves

Guide curves are a valuable feature when making design modifications to individual stages of axial machines as well as wholesale changes. Concepts NREC has expanded the use of guide curves and how they interact with hub and shroud contours, including continuous contours, as well as adding new snapping functions that ensure a designer stays within a pre-defined flow path set by those guide curves. 

Software Highlights

  • AxCent easily handles the most complex blade geometry. A partial list of blade design features include:

    • Blade stacking of 2D cross sections

    • Blade restaggering around an arbitrary axis

    • Bowed blading defined by hub-to-shroud bow profiles

    • Bowed or sculpted element with arbitrary number of mid-span sections

    • Variable tip clearance on either end of the blade

    • Flow cuts and radial trims

    • Swept leading/trailing edges

    • Multiple, offset, and independent splitter blades

    • Irregular blade/splitter configurations for noise reduction

    Other design features include:

    • Parameterized volute geometry generation

    • Split duct geometry

    • Fillets with constant or variable radius and aspect ratio

    Recent 3D features include:

    • Cutaway view allows real-time cross sections to be viewed as the design is edited

    • 3D overlays permit viewing of current, real-time changes on a transparent overlay

  • AxCent includes several options for real-time interactive flow analysis:

    • Inviscid streamline curvature solvers, including Concepts NREC's Multi-Stream Tube Solver (MST),  are recognized in the industry as the best for centrifugal pumps and compressors

      • MST puts the power of real-time analysis in your hands.  It enables you to immediately visualize the consequences of design changes on velocity, temperature, and pressure. You can look at multiple iterations in seconds, rather than the hours necessary to export each design to CAD for CFD analysis. 

      • Using MST, you can significantly reduce the overall design cycle time by providing an optimized iteration for validation, rather then the more traditional iterative process that requires a lot more back and forth.

    Before editingDesign before editing


    After editingDesign after editing


    And a number of CFD-based solvers:

    • Blade-to-blade is a powerful and rapid quasi-3D solver for quickly evaluating flow patterns across the channel
      • Quickly provides validated feedback to resolve blade profiles for twist, camber and thickness
    • Throughflow is another quasi-3D solver for rapid analysis of axial streamwise flow in compressors and turbines using industry-standard loss and deviation models
      • Enables feedback in minutes compared to full CFD analysis
      • Run multiple iterations to improve performance
    • Full 3D CFD with an advanced full Navier-Stokes solver for comprehensive analysis using a seamless one-click interface with Cadence/NUMECA's FINE®/Turbo

    Four-stage axial compressor case study showing results from both Throughflow and Blade-to-Blade solvers:

    Throughflow SolverThroughflow ran in under 25 seconds - best for axial machines


    Blade to blade solver

    Blade-to-Blade ran in approximately one minute. It works on either axial or radial machines and runs fastest on radial machines.

  • AxCent works through direct links with all Concepts NREC meanline programs including:

    AxCent can be started from any Concepts NREC meanline program (once the geometry has been set up), and can link the AxCent geometry back to the meanline design to rerun the analysis and regenerate the performance maps. Additionally, using TurboOPT II, the AxCent geometry can be linked to an internal optimizer or to a third-party optimizer such as modeFRONTIER, Isight™, VisualDOC, and IOSO.

  • AxCent is fully integrated with Concepts NREC FEA stress analysis programs, Pushbutton FEA™. FEA stress, thermal and modal analysis can be conducted directly through the AxCent interface.

  • AxCent is also compatible with many commercial and open source software packages. Some examples include:

    • FLUENT® - Direct export of geometry or CFD grids through native FLUENT format files

    • OpenFOAM® -  Export of grid files and importation of output files through OpenFOAM formats

    • CAD Systems Export of IGES and STEP formats for seamless integration with virtually any CAD package

    • Isight - Link to Isight optimization via XML format or directly through Concepts NREC’s TurboOPT IIoptimization software

    • Import-export formats with Python scripting, XML format options, various other file output for seamless export to Concepts NREC CAM programs (the MAX-PAC suite)

AxCent easily handles the most complex blade geometry. A partial list of blade design features include:

  • Blade stacking of 2D cross sections

  • Blade restaggering around an arbitrary axis

  • Bowed blading defined by hub-to-shroud bow profiles

  • Bowed or sculpted element with arbitrary number of mid-span sections

  • Variable tip clearance on either end of the blade

  • Flow cuts and radial trims

  • Swept leading/trailing edges

  • Multiple, offset, and independent splitter blades

  • Irregular blade/splitter configurations for noise reduction

Other design features include:

  • Parameterized volute geometry generation

  • Split duct geometry

  • Fillets with constant or variable radius and aspect ratio

Recent 3D features include:

  • Cutaway view allows real-time cross sections to be viewed as the design is edited

  • 3D overlays permit viewing of current, real-time changes on a transparent overlay

AxCent includes several options for real-time interactive flow analysis:

  • Inviscid streamline curvature solvers, including Concepts NREC's Multi-Stream Tube Solver (MST),  are recognized in the industry as the best for centrifugal pumps and compressors

    • MST puts the power of real-time analysis in your hands.  It enables you to immediately visualize the consequences of design changes on velocity, temperature, and pressure. You can look at multiple iterations in seconds, rather than the hours necessary to export each design to CAD for CFD analysis. 

    • Using MST, you can significantly reduce the overall design cycle time by providing an optimized iteration for validation, rather then the more traditional iterative process that requires a lot more back and forth.

Before editingDesign before editing


After editingDesign after editing


And a number of CFD-based solvers:

  • Blade-to-blade is a powerful and rapid quasi-3D solver for quickly evaluating flow patterns across the channel
    • Quickly provides validated feedback to resolve blade profiles for twist, camber and thickness
  • Throughflow is another quasi-3D solver for rapid analysis of axial streamwise flow in compressors and turbines using industry-standard loss and deviation models
    • Enables feedback in minutes compared to full CFD analysis
    • Run multiple iterations to improve performance
  • Full 3D CFD with an advanced full Navier-Stokes solver for comprehensive analysis using a seamless one-click interface with Cadence/NUMECA's FINE®/Turbo

Four-stage axial compressor case study showing results from both Throughflow and Blade-to-Blade solvers:

Throughflow SolverThroughflow ran in under 25 seconds - best for axial machines


Blade to blade solver

Blade-to-Blade ran in approximately one minute. It works on either axial or radial machines and runs fastest on radial machines.

AxCent works through direct links with all Concepts NREC meanline programs including:

AxCent can be started from any Concepts NREC meanline program (once the geometry has been set up), and can link the AxCent geometry back to the meanline design to rerun the analysis and regenerate the performance maps. Additionally, using TurboOPT II, the AxCent geometry can be linked to an internal optimizer or to a third-party optimizer such as modeFRONTIER, Isight™, VisualDOC, and IOSO.

AxCent is fully integrated with Concepts NREC FEA stress analysis programs, Pushbutton FEA™. FEA stress, thermal and modal analysis can be conducted directly through the AxCent interface.

AxCent is also compatible with many commercial and open source software packages. Some examples include:

  • FLUENT® - Direct export of geometry or CFD grids through native FLUENT format files

  • OpenFOAM® -  Export of grid files and importation of output files through OpenFOAM formats

  • CAD Systems Export of IGES and STEP formats for seamless integration with virtually any CAD package

  • Isight - Link to Isight optimization via XML format or directly through Concepts NREC’s TurboOPT IIoptimization software

  • Import-export formats with Python scripting, XML format options, various other file output for seamless export to Concepts NREC CAM programs (the MAX-PAC suite)

Blade Geometry

AxCent easily handles the most complex blade geometry. A partial list of blade design features include:

  • Blade stacking of 2D cross sections
  • Blade restaggering around an arbitrary axis
  • Bowed blading defined by hub-to-shroud bow profiles
  • Bowed or sculpted element with arbitrary number of mid-span sections
  • Variable tip clearance on either end of the blade
  • Flow cuts and radial trims
  • Swept leading/trailing edges
  • Multiple, offset, and independent splitter blades
  • Irregular blade/splitter configurations for noise reduction

Other design features include:

  • Parameterized volute geometry generation
  • Split duct geometry
  • Fillets with constant or variable radius and aspect ratio

Recent 3D features include:

  • Cutaway view allows real-time cross sections to be viewed as the design is edited
  • 3D overlays permit viewing of current, real-time changes on a transparent overlay

Flow analysis

AxCent includes several options for real-time interactive flow analysis:

  • Inviscid streamline curvature solvers, including Concepts NREC's Multi-Stream Tube Solver (MST),  are recognized in the industry as the best for centrifugal pumps and compressors
    • MST puts the power of real-time analysis in your hands.  It enables you to immediately visualize the consequences of design changes on velocity, temperature, and pressure. You can look at multiple iterations in seconds, rather than the hours necessary to export each design to CAD for CFD analysis. 
    • Using MST, you can significantly reduce the overall design cycle time by providing an optimized iteration for validation, rather then the more traditional iterative process that requires a lot more back and forth.
Before editing

Design before editing

After editingDesign after editing

CFD Analysis

AxCent includes a number of CFD-based solvers:

  • Blade-to-blade is a powerful and rapid quasi-3D solver for quickly evaluating flow patterns across the channel
    • Quickly provides validated feedback to resolve blade profiles for twist, camber and thickness
  • Throughflow is another quasi-3D solver for rapid analysis of axial streamwise flow in compressors and turbines using industry-standard loss and deviation models
    • Enables feedback in minutes compared to full CFD analysis
    • Run multiple iterations to improve performance
  • Full 3D CFD with an advanced full Navier-Stokes solver for comprehensive analysis using a seamless one-click interface with Cadence/NUMECA's FINE®/Turbo

Four-stage axial compressor case study showing results from both Throughflow and Blade-to-Blade solvers:

Throughflow Solver

Throughflow ran in under 25 seconds - best for axial machines

Blade to blade solver

Blade-to-Blade ran in approximately one minute. It works on either axial or radial machines and runs fastest on radial machines.

Direct Integration to Other Programs

AxCent works through direct links with all Concepts NREC meanline programs including:

AxCent can be started from any Concepts NREC meanline program (once the geometry has been set up), and can link the AxCent geometry back to the meanline design to rerun the analysis and regenerate the performance maps. Additionally, using TurboOPT II, the AxCent geometry can be linked to an internal optimizer or to a third-party optimizer such as modeFRONTIER, Isight™, VisualDOC, and IOSO.

Stress Analysis Integration

AxCent is fully integrated with Concepts NREC FEA stress analysis programs, Pushbutton FEA™. FEA stress, thermal and modal analysis can be conducted directly through the AxCent interface.

Interface to other Programs

AxCent is also compatible with many commercial and open source software packages. Some examples include:

  • FLUENT®. Direct export of geometry or CFD grids through native FLUENT format files
  • OpenFOAM®. Export of grid files and importation of output files through OpenFOAM formats
  • CAD Systems. Export of IGES and STEP formats for seamless integration with virtually any CAD package
  • Isight. Link to Isight optimization via XML format or directly through Concepts NREC’s TurboOPT IIoptimization software
  • Import-export formats with Python scripting, XML format options, various other file output for seamless export to Concepts NREC CAM programs (the MAX-PAC suite)

Product Support

AxCent Brochure

Detailed 3D Design and Rapid 2D Flow Analysis Module for Turbomachinery

AxCENT_Data_Sheet

Find Your Rep

Our Sales Offices are strategically located around the globe to service all your turbomachinery needs.

Upcoming Events

Tradeshows, Workshops, Webinars and more.

I came to the realization that we needed some objective insight.

We were working well with the OEM but even with our combined efforts, we were struggling to get a critical compressor to pass performance on their test stand. Although I'd never directly done business with Concepts NREC I was familiar with them and their capability so I chose to contact them when I came to the realization that we needed some objective insight. Concepts NREC fielded my cold call and immediately engaged their expertise in a complex problem that was also challenged by schedule constraints. They provided increased understanding of an already complex CFD which resulted in increased confidence that the proposed solution would succeed on the next test stand attempt (which it did!). We are pleased to have had the help of Concepts NREC and now have a well-performing compressor in our process.”

Bryan Barrington

Senior Advisor - Machinery Engineering

Related Blog Articles

The Gyroscopic Effect
CAE Software
The Gyroscopic Effect
by Thomas Gresham, Senior Mechanical Design Engineer
This post covers one of the fundamental issues that makes rotordynamics a unique subject: The Gyroscopic Effect. The gyroscopic effect can be observed in the behavior of spinning tops, fidget spinners, inertial navigation systems, and many types of turbomachinery. If you have ever tried to tilt an object while it is spinning, then you may have noticed this effect.
Continue Reading
Part 2: Hydrogen Turbomachinery Design
CAE Software
Part 2: Hydrogen Turbomachinery Design
by Mark R. Anderson, Chief Technical Officer, Concepts NREC
Hydrogen is attracting a lot of interest in different circles these days from: propulsion, to energy storage, to personal transportation. The most obvious benefit of hydrogen fuel is a total lack of carbon in the exhaust products. This is rare for a fuel that’s a fairly high energy substance to begin with. More specifically, its high energy in terms of energy per unit of weight but somewhat less so in terms of volume.
Continue Reading
Part 1: Hydrogen and Turbomachinery
CAE Software
Part 1: Hydrogen and Turbomachinery
by Dr. David Schowalter, Sr. Director, Global Software Sales
Because of its promise as a non-polluting fuel, hydrogen is currently a very popular topic among the energy and turbomachinery communities. If hydrogen is reacted with pure oxygen, the thermal energy release is significant, and water is the only by-product. This highly exothermic reaction was used to get humanity to the moon. Of course, nitrous oxides (NOx) can be released if hydrogen is burned in air. If, on the other hand, the energy from the reaction is converted to heat and electricity in a fuel cell, then only water vapor is discharged. In addition, when pressurized in a tank, hydrogen is an easily transportable fuel, and so is desirable for transportation.
Continue Reading