SpinOffs

   

Increased Milling Capability and Capacity for Large 5-Axis Impellers

by Sean McDermott on Aug 30, 2019 9:19:33 AM

Concepts NREC has added two additional Hermle 5-axis mills in our shop, and we’re excited 

about the increased capabilities these new machines bring! In August of 2018 we received the 

first of these mills, a 2018 Hermle C52uMT.  Just recently, in May of 2019, we added a Hermle C42u


In addition to these new, state-of-the-art 5-axis Hermle mills, our shop utilizes a Mikron HSM600U, good for parts up to ~13” in diameter; a Hermle C40, which can mill parts up to ~20” in diameter, and a Mitsui Seiki HS5A-80, which can handle larger parts, up to ~32” in diameter.  We now have a full range of  5-axis mills capable of producing the most challenging parts from >1 inch up to over 39 inches in diameter.  

Putting Entropy to Work

by Francis A. Di Bella, P.E. on Aug 2, 2019 10:21:55 AM

The previous blog, Entropy Happens… Deal with It! ended with the statement, “That’s how Concepts NREC deals with the constraints of the Second Law of Thermodynamics when designing high-efficiency turbomachinery – we literally put entropy to work!” That blog not only lead to an increase in sales of bumper sticker sales emblazoned with “Working on it, STAY TUNED!”, it led to a request to explore this statement in a little more detail – particularly as the idea might apply to the analysis, design and manufacturing of turbomachinery.

Practical Application of Multidisciplinary Optimization

by Dr. Peter Weitzman & Steve Kohr on Jul 26, 2019 8:59:39 AM

If you design turbomachinery for a living, you are already doing multidisciplinary optimization (MDO), regardless of whether you have a special software tool with MDO built in or not. Turbomachines, by their nature, require advanced fluid dynamics as well as very high mechanical complexity.  Whenever you make a trade-off between performance and durability or performance and weight/inertia, you are doing an MDO study. Adding MDO software to your traditional design approaches can give you additional insight into the trade-offs, and save you time by avoiding the need for manual iteration.

Entropy Happens… Deal with It!

by Francis A. Di Bella, P.E. on Jul 19, 2019 9:09:00 AM

If there’s one thing good about sitting in snarled traffic in Boston, it’s that you get to see some very original bumper stickers. The most recent bumper sticker I saw was probably the strangest one, no doubt created by some engineering professor who doesn’t see that the glass is half full, but that it has a safety factor of 2! Nevertheless, the bumper sticker stated the obvious when one thinks about it: ENTROPY HAPPENS! And then, to emphasize the point, the artist has the letters slowly “evaporating,” demonstrating graphically that entropy proceeds from order to chaos.

I recently got back from my favorite annual conference: ASME’s Turbo Expo. This year, someone thought it would be a good idea to hold it in Phoenix, Arizona…in the summertime.  While that’s not the choice I would have made, I did enjoy the conference very much and thought it was well worth attending. 

In Thermodynamics: “What Goes Around-Comes Around” is a Good Thing

by Francis A. Di Bella, P.E. on Jun 28, 2019 10:07:50 AM

When discussing the efficiency of transforming one form of energy to another, circularity is the way to go. Anyone who has spent even a little time studying engineering thermodynamics knows that the continuous transformation of energy from a heat energy source to produce mechanical or electrical power must contend with components that operate in a cycle. The key word here being “continuous”. The combustion of any carbon-hydrogen bond material (i.e., fossil fuels), or the liberation of heat energy from any number of materials when placed in a piston-cylinder, would not be very useful if the piston is not returned to its initial “precombustion” position. It is literally the difference between the one-time launching of an object from the cylinder or the continuous production of rotary shaft power; power that can be used to propel a vehicle forward or turn an electric generator. It is the cyclic operation of the fluid in the thermodynamic cycle that enables heat engines and refrigeration cycles to provide continuous power, or cooling, that is needed for the safety, security, comfort and all the other “hierarchy of needs” that was so well formulated by the renowned humanist psychologist, Dr. Abraham Maslow.

Abstracts From Papers Presented at Turbo Expo 2019

by Barbara Shea on Jun 21, 2019 9:22:14 AM

Wow, Concepts NREC had a lot going on at this year's ASME Turbo Expo 2019 in Phoenix, AZ! We held our North American CAE User Group Meeting, spoke to over 200 people at our booth, chaired several sessions and presented two papers. In case you were not able to go, here are the abstracts from the two papers:

Top Summer Vacations for Turbomachinery Engineers

by Barbara Shea on Jun 14, 2019 11:35:56 AM

Summer is almost here, at least in my hemisphere, so here are some of the best places around the world people in the turbomachinery industry might find interesting! Know of another? Share your favorite!

Turbomachinery equipment is generally segmented based on whether it extracts energy (e.g., turbines) or adds energy (e.g., pumps and compressors). The addition of energy is usually used to compress or move a fluid. When the fluid is a gas, the turbomachinery equipment is typically referred to as a fan, blower or compressor. This blog will explore the differences between these three devices and where they are used.  

How to Design a Wind Turbine Rotor

by Kerry Oliphant on May 31, 2019 10:08:07 AM

In my previous blog post, “How the Design of a Wind Turbine Differs from other Types of Turbines”, I showed that the very small pressure drop across the rotor makes wind turbine design different from other types of turbines. This blog will focus on the best method to design a wind turbine rotor based on the fact that only kinetic energy is available to extract from the wind.

Previous |