SpinOffs

   

What do Undergraduates, a Chimney, Renewable Energy and an Open Pit Mine Have in Common?

by Francis A. Di Bella, P.E. on Apr 19, 2019 10:14:00 AM

It sounds like an opening to a joke, but I wanted to share some creative thinking sparked during a field trip to a local gas turbine cogeneration plant with some undergraduate students I teach. The students were learning about basic thermodynamics, and visiting a power plant was a good way to give them perspective of what a kW is, and how much hardware and floor space is needed to generate 21,000 of them. I scheduled the trip for when the Gas Turbine system was “down for routine maintenance”, so the students could really crawl in and around the “beast” and be able to hear the explanations of the tour guide. 

Topics: thermodynamics

Simple Stall - Video Blog - Part 2

by Mark R. Anderson on Apr 12, 2019 9:33:58 AM

Our CTO, Mark Anderson, takes a fundamental look at simple stall and its impact on turbochargers stability and range. This is the second video in this 2-part series. Be sure to watch Part 1 first!

Performance Corrections for Compressor Maps

by Mark R. Anderson on Apr 9, 2019 9:56:09 AM

Turbomachinery performance is almost always analyzed and tested with a fixed inflow condition. In other words, the assumption is that the inflow fluid temperature and pressure is defined and unchanging over the map of machine performance. Since varying conditions often exist in practice, the performance maps are sometimes normalized, as shown in the figure below. The pressure ratio of a compressor is plotted versus a corrected mass flow range and rotational speed. 

Simple Stall - Video Blog - Part 1

by Mark R. Anderson on Apr 5, 2019 10:03:00 AM

Our CTO, Mark Anderson, takes a fundamental look at simple stall and its impact on turbochargers stability and range. This is the first video in this 2-part series. 

Water & Turbomachinery - Two Great Things, That Go Great Together

by Andrew Provo on Mar 22, 2019 10:17:34 AM

I work with water a lot here at Concepts NREC. Water is frequently the fluid that flows through various types of rotating equipment we design to either release or store energy. Mankind’s fascination with manipulating the movement of water goes way back; read Mark Anderson’s blog on  Early Water Handling to see just how far back it goes. Today, more advanced turbomachinery is used for both hydroelectric and hydrokinetic applications. 

Designing Ruled Surfaces for Flank Milling

by Peter Klein on Mar 15, 2019 10:21:00 AM

As discussed in my previous blog post, Flank Milling, How Hard Can it Be?, turbomachinery blades are commonly designed as ruled surfaces, with the goal of making manufacturing easier and faster with flank-milling.  While some non-ruled surfaces can be acceptably flank-milled, the programming and machining process for flank-milling is generally more dependable with ruled data. However, the ruled data should be well conditioned, and several pitfalls should be avoided during the design and construction process.

What's Better than Perfect? Semi-Perfect Gas Models

by Mark R. Anderson on Mar 8, 2019 10:30:00 AM

In a previous blog, Fluid Phenomena Primer: Energy Versus Temperature, Specific HeatI explained the behavior for gas phase fluids and how the temperature is affected at high energy levels.  In another blog, When Perfect is Good Enough - Perfect Gas Models, we looked at the simple perfect gas model.  In this blog, we’ll explore the next step up in the hierarchy of gas thermodynamic modeling: semi-perfect gas.

How the Design of a Wind Turbine Differs from Other Types

by Kerry Oliphant on Mar 1, 2019 10:22:00 AM

Wind power generation is rapidly growing worldwide, and with that growth, demand for wind turbine design engineers is also growing.  However, an engineer who has experience designing turbines in most applications, will often have trouble translating their hard-won skills for general turbine design, into the wind turbine design. Why? 

Phase Change - Make Mine a Double!

by Mark R. Anderson on Feb 22, 2019 10:40:06 AM

As I’ve always said, there’s as much thermodynamics in a glass of beer, as there is in a power plant. Don't believe me? Read on. Phase change is common phenomena that we see all the time.  We’re most familiar with H2O, of course, in its various forms: ice, water, and steam. This is partly because it’s a very common substance (on Earth anyway) but also because it’s one of the rare fluid types that readily changes phase at temperatures and pressures humans can typically dwell in. 

 

Back to Beer...

When Perfect is Good Enough - Perfect Gas Models

by Mark R. Anderson on Feb 15, 2019 10:22:00 AM

What is a perfect gas?

A perfect gas is one that has a linear variation in energy with respect to temperature and a linear variation in pressure with respect to temperature at constant volume. The perfect gas model is the simplest of all models for gas phase fluids. For a perfect gas, we need only two unique properties of the substance to determine the relationships between pressure, density, energy, and temperature. 

 

Previous |