Whether it’s a compressor, turbine, or an entire rocket turbopump design project we are tackling at Concepts NREC, we typically divide the design project into three phases: (1) scoping or feasibility study, (2) preliminary design, and (3) detailed design.   Each of these phases has a specific purpose, although where one phase ends and the next phase begins can vary from project to project.   The purpose and need for a scoping study was described in my blog posted last month, Why are Scoping Studies Necessary for Your Turbomachinery Project? In this blog I will describe the difference between preliminary design and detailed design.

Why are Scoping Studies Necessary for Your Turbomachinery Project?

by Daniel V. Hinch, Corporate VP Sales and Marketing, Concepts NREC on Feb 19, 2021 11:00:00 AM

At Concepts NREC we do a lot of projects from ‘clean sheet’ all the way through manufacturing of prototype hardware.   In fact, these types of projects are among the favorite of the engineering staff – create what never was, and quickly get to see it produced in hardware and often tested. For these types of projects, we strongly suggest that we complete a ‘scoping study’ as the first phase of the project.

In Thermodynamics: “What Goes Around-Comes Around” is a Good Thing

by Francis A. Di Bella, P.E. on Jun 28, 2019 10:07:50 AM

When discussing the efficiency of transforming one form of energy to another, circularity is the way to go. Anyone who has spent even a little time studying engineering thermodynamics knows that the continuous transformation of energy from a heat energy source to produce mechanical or electrical power must contend with components that operate in a cycle. The key word here being “continuous”. The combustion of any carbon-hydrogen bond material (i.e., fossil fuels), or the liberation of heat energy from any number of materials when placed in a piston-cylinder, would not be very useful if the piston is not returned to its initial “precombustion” position. It is literally the difference between the one-time launching of an object from the cylinder or the continuous production of rotary shaft power; power that can be used to propel a vehicle forward or turn an electric generator. It is the cyclic operation of the fluid in the thermodynamic cycle that enables heat engines and refrigeration cycles to provide continuous power, or cooling, that is needed for the safety, security, comfort and all the other “hierarchy of needs” that was so well formulated by the renowned humanist psychologist, Dr. Abraham Maslow.

Turbomachinery equipment is generally segmented based on whether it extracts energy (e.g., turbines) or adds energy (e.g., pumps and compressors). The addition of energy is usually used to compress or move a fluid. When the fluid is a gas, the turbomachinery equipment is typically referred to as a fan, blower or compressor. This blog will explore the differences between these three devices and where they are used.  

Valentine’s Day is February 14, and while some cynics refer to it as a “Hallmark holiday”, most people commemorate the day in some way. One of the biggest challenges is finding a card that perfectly captures the way you feel about someone, while also reflecting who you are.  Well, Concepts NREC has created some turbomachinery-themed Valentine’s Day cards for engineers. These fall into the Art end of our Art-to-Part Solution.


Flank Milling - How Hard Can It Be?

by Peter Klein on Jan 4, 2019 10:11:00 AM

 When designing compressors, engineers often use ruled-surface blades with the goal of making a shape that’s easily manufactured on a 5-axis machine.  Theses blades can be quickly machined in one pass by aligning the side of a cutting tool to the rulings. This process is often referred to as “flank milling.”  The alternative is to make many passes with the tool tip, a process known as “point milling”. For the right application, flank milling is often favored for shorter cutting times and better surface quality, but there are some caveats.

The Wright Stuff for Turbomachinery

by Dr. David Schowalter on Dec 14, 2018 9:17:41 AM

As an engineer, you probably have at least some familiarity with the story of how two bicycle mechanics, named Orville and Wilbur Wright, invented controlled-powered flying machines at Kitty Hawk, NC. While I knew the basic story, I learned a lot more reading David McCullough’s book “The Wright Brothers,” which, I highly recommend. I could not help but make the connections to what we, in the turbomachinery industry, owe to these dedicated and industrious brothers. Their groundbreaking flight, pictured below, on December 17, 1903,  is often cited as the birth of modern aviation.

Reverse Engineering - Going from Part to Art

by Sharon Wight on Dec 7, 2018 9:12:37 AM

Have you ever needed to know the exact geometry of a compressor that has been running for years in your process plant? Perhaps you need to analyze how it would perform if the process fluid had to be changed to meet new government regulations. Or maybe there has been damage to the impeller and a complete mechanical analysis is required before a new one can be put into service. Eventually, everything, even well-designed turbomachinery, needs to be replaced or upgraded.

There is No Such Thing as a Design Point

by Dr. Peter Weitzman on Oct 26, 2018 10:00:00 AM

Most turbomachines need to operate across a range of fluid flow rates and speeds. This is obvious in transportation applications where gas turbine engines and turbochargers need to operate at all of the speeds, altitudes and temperatures that the vehicles they power will encounter. In industrial and refrigeration applications, turbomachines need to have a wide operating range to make them appealing to end users who want efficiency under many operating conditions.

Designing Turbomachinery is like Solving a Rubik's Cube

by Barbara Shea on Sep 21, 2018 10:01:00 AM

I think we can all agree that designing turbomachinery is hard. There are just so many moving parts (pun intended) in the design process, and they are all interconnected.  When you change the blade shape, it changes the aerodynamics, and could impact manufacturability. Everything you change has a cascading effect across many different areas, because all of the areas are linked; just like a Rubik's® cube! Only, in turbomachinery design, you are not always trying to get all of the sides to be one color. Heck, even a 3-year old can do that

Previous |