SpinOffs

   

The Tesla Turbine – A Solution Looking for the Right Problem

by Barbara Shea on May 17, 2019 8:20:44 AM

The great engineer, Dr. Nikola Tesla, is best known for his work with alternating current (AC) electricity, but, did you know that he patented a bladeless type of turbomachinery in 1913? Called the Tesla Turbine, he developed it while trying to make an engine that was light enough to power his ultimate goal of building a “flying machine”. Tesla-type turbines can also be referred to as multiple-disk, friction, shear-force, or boundary layer turbomachinery.

Going Through a Phase – Modeling Phase Change with Cubics

by Mark R. Anderson on Apr 26, 2019 9:32:08 AM

When fluids undergo a phase change (see Phase Change - Make Mine a Double), it typically has a very significant effect of the flow behavior and energy level of the system.  Some examples of this are: cavitation in a pump, condensing near the exit of a steam turbine, even the everyday phenomenon of the weather is basically a never-ending phase change process of water, and its interaction with air. 

Simple Stall - Video Blog - Part 2

by Mark R. Anderson on Apr 12, 2019 9:33:58 AM

Our CTO, Mark Anderson, takes a fundamental look at simple stall and its impact on turbochargers stability and range. This is the second video in this 2-part series. Be sure to watch Part 1 first!

Performance Corrections for Compressor Maps

by Mark R. Anderson on Apr 9, 2019 9:56:09 AM

Turbomachinery performance is almost always analyzed and tested with a fixed inflow condition. In other words, the assumption is that the inflow fluid temperature and pressure is defined and unchanging over the map of machine performance. Since varying conditions often exist in practice, the performance maps are sometimes normalized, as shown in the figure below. The pressure ratio of a compressor is plotted versus a corrected mass flow range and rotational speed. 

Simple Stall - Video Blog - Part 1

by Mark R. Anderson on Apr 5, 2019 10:03:00 AM

Our CTO, Mark Anderson, takes a fundamental look at simple stall and its impact on turbochargers stability and range. This is the first video in this 2-part series. 

Water & Turbomachinery - Two Great Things, That Go Great Together

by Andrew Provo on Mar 22, 2019 10:17:34 AM

I work with water a lot here at Concepts NREC. Water is frequently the fluid that flows through various types of rotating equipment we design to either release or store energy. Mankind’s fascination with manipulating the movement of water goes way back; read Mark Anderson’s blog on  Early Water Handling to see just how far back it goes. Today, more advanced turbomachinery is used for both hydroelectric and hydrokinetic applications. 

What's Better than Perfect? Semi-Perfect Gas Models

by Mark R. Anderson on Mar 8, 2019 10:30:00 AM

In a previous blog, Fluid Phenomena Primer: Energy Versus Temperature, Specific HeatI explained the behavior for gas phase fluids and how the temperature is affected at high energy levels.  In another blog, When Perfect is Good Enough - Perfect Gas Models, we looked at the simple perfect gas model.  In this blog, we’ll explore the next step up in the hierarchy of gas thermodynamic modeling: semi-perfect gas.

How the Design of a Wind Turbine Differs from Other Types

by Kerry Oliphant on Mar 1, 2019 10:22:00 AM

Wind power generation is rapidly growing worldwide, and with that growth, demand for wind turbine design engineers is also growing.  However, an engineer who has experience designing turbines in most applications, will often have trouble translating their hard-won skills for general turbine design, into the wind turbine design. Why? 

Phase Change - Make Mine a Double!

by Mark R. Anderson on Feb 22, 2019 10:40:06 AM

As I’ve always said, there’s as much thermodynamics in a glass of beer, as there is in a power plant. Don't believe me? Read on. Phase change is common phenomena that we see all the time.  We’re most familiar with H2O, of course, in its various forms: ice, water, and steam. This is partly because it’s a very common substance (on Earth anyway) but also because it’s one of the rare fluid types that readily changes phase at temperatures and pressures humans can typically dwell in. 

 

Back to Beer...

When Perfect is Good Enough - Perfect Gas Models

by Mark R. Anderson on Feb 15, 2019 10:22:00 AM

What is a perfect gas?

A perfect gas is one that has a linear variation in energy with respect to temperature and a linear variation in pressure with respect to temperature at constant volume. The perfect gas model is the simplest of all models for gas phase fluids. For a perfect gas, we need only two unique properties of the substance to determine the relationships between pressure, density, energy, and temperature. 

 

Previous |