SpinOffs

   

Optimization using Dakota in Concepts NREC’s TurboOPT II

by Rachel Moore, Senior Software Engineer on Sep 11, 2020 11:00:00 AM

Automated optimization is becoming more and more common place in the turbomachinery industry today.  What was once exclusively the domain of academics and high-end researchers, has become much more widespread today.  The rise of optimization is directly related to ever increasing computer power available and the advent of new software tools to set it up.  Virtually every category of turbomachinery has adopted it, at least to some degree.  One can find many examples of advanced optimization in the open literature but more practical applications can add value to your product line in a very reasonable time and effort.  

Practical Application of Multidisciplinary Optimization

by Dr. Peter Weitzman & Steve Kohr on Jul 26, 2019 8:59:39 AM

If you design turbomachinery for a living, you are already doing multidisciplinary optimization (MDO), regardless of whether you have a special software tool with MDO built in or not. Turbomachines, by their nature, require advanced fluid dynamics as well as very high mechanical complexity.  Whenever you make a trade-off between performance and durability or performance and weight/inertia, you are doing an MDO study. Adding MDO software to your traditional design approaches can give you additional insight into the trade-offs, and save you time by avoiding the need for manual iteration.

Many energy recovery, drive cycles (Organic and Steam Rankine cycles) and rocket propulsion cycles require the use of a turbine that operates at low volumetric flow and high-pressure ratio. Additional requirements include low cost, reduced weight, and reduced axial length (for robust rotor dynamics).

Many gas turbines with radial compressors utilize a radial-to-axial inlet duct upstream of the first compressor stage. Aside from the fact that flow in the duct generates aerodynamic losses, the flow profiles at the duct exit, delivered to the inlet of the first impeller, also affects the performance of the compressor. 

Optimizing the Screw Inducer for a Pump

by Oleg Dubitsky on Feb 16, 2018 11:05:47 AM

High-efficiency, low-cavitation pumps often require a screw type inducer to treat the inflow to the main radial/mixed flow pump blades. Efficiency and head rise, split between inducer and main pump, are questions explored during the design process. Another important design consideration is the tolerance to cavitation. Finding the best solution, when there is often a trade-off between two or more operational conditions, is difficult. We have found that multi-objective optimization, for single or multiple operating points, is the best tool to use.

Previous | Next